

FLOW OF POROUS MEDIA *MSc in Petroleum Engineering* **MFKOT730035**

COURSE DESCRIPTION

University of Miskolc Faculty of Earth Science and Engineering Petroleum and Natural Gas Institute September 2022

Course Data Sheet

Course Title: Flow in Porous Media	Code: MFKOT730035
Instructor: Dr. Zoltán TURZÓ associate	Responsible department/institute:
professor	DPE/IPNG (OMTSZ/KFGI)
	Course Element: Compulsory
Position in curriculum*	Pre-requisites (if any): Reservoir
(which semester): 3	Engineering Fundamentals
(2)	(MFKOT720024)
No. of contact hours per week (lecture	Type of Assessment (examination /
+ seminar): 0+3	practical mark / other): practical mark
Credits: 3	Course: full time

Course Description:

- 1. Equation of single phase filtration.
- 2. Solution of the equation of single phase filtration.
- 3. Piston-like displacement.
- 4. Characteristics of various flow regimes, steady-state flow, unsteady-state flow, pseudo steady-state slow
- 5. The radial-diffusivity equation, solutions to the radial-diffusivity, equation bounded cylindrical reservoir, infinite cylindrical reservoir with line source, well pseudo steady-state flow, choosing the best pressure functions
- 6. Principle of superposition accounting for the effects of more than one well, accounting for rate change effects, accounting for pressure change effects simulating boundary effects.
- 7. The equation of two phase filtration, vertical two-phase filtration of incompressible fluids, the fractional flow equation, frontal displacement determination of the frontal saturation by material balance method.
- 8. Water coning, fingering and cresting in vertical and horizontal wells, critical rate calculation.
- 9. Steady state and pseudo-steady state filtration around horizontal well.
- 10. Water and gas coning in horizontal wells
- 11. Well Tests: flow tests
- 12. Well Tests: Pressure Build-up Tests (PBUPT)
- 13. Well Tests: Interpretations of PBUPT
- 14. Well Tests: Interpretations of PBUPT

Competencies to evolve

Knowledge:

Knows the economic processes related to the hydrocarbon industry.

Knows the properties of the fluids found in petroleum, natural gas and geothermal reservoirs, as well as the storage rocks; characteristics of flow in such reservoirs.

Knows the production mechanisms of underground reservoirs and the primary or enhanced extraction mechanisms that ensure optimal production.

Knows the basics of numerical simulation of underground storages.

Knows the methods and tools of computerized design and analysis in the hydrocarbon industry. Ability:

Able to interpret the economic processes related to the hydrocarbon industry and to give adequate answers to them.

Capable of predicting the behavior of fluids in petroleum, natural gas, and geothermal reservoirs, the properties of reservoir rocks, and the characteristics of flow in such reservoirs.

Able to recognize the production mechanisms of underground reservoirs and select the primary or enhanced extraction mechanisms that provide optimal production.

Capable of numerical simulation of underground storages.

Capable of hydrocarbon industrial computer design and analysis.

Attitude:

Autonomy and responsibility:

Able to independently manage hydrocarbon industrial complex planning works and perform project management tasks, or participate in them.

Capable of independently choosing the appropriate mechanisms for the production of underground reservoirs; to implement the most favorable "reservoir management".

Able to autonomously plan the use of energy carriers produced from renewable natural resources and residual materials in the energy supply system, and manage the operation of the established system.

Takes responsibility for his/her professional decisions and the work processes carried out by him/her or under his/her control.

Assessment and grading:		Grading scale:	
Students will be assessed w	ith using the	% value	Grade
following elements.		90 -100%	5 (excellent)
Attendance:	5 %	80 - 89%	4 (good)
Midterm exam	40 %	70 - 79%	3 (satisfactory)
Final exam	55 %	60 - 69%	2 (pass)
Total	100%	0 - 59%	1 (failed)

Compulsory or recommended literature resources:

- Craft and Hawkins: Applied Petroleum Reservoir Engineering, Prentice Hall, 1991, ISBN 0-13-039884-5
- Towler: Fundamental Principles of Reservoir Engineering, SPE Textbook Series, Vol.8., 2002, ISBN 1-55563-092-8
- T. Ahmed: Advanced Reservoir Engineering, Gulf Publishing Co. 2005, ISBN-13: 978-0-7506-7733-2
- T. Ahmed: Reservoir Engineering Handbook, Gulf Publishing Co., 2001, ISBN 0-88415-770-9
- L. P. Dake: Fundamentals of Reservoir Engineering, Elsevier, 1978, ISBN 0-444-41830-X

Course Schedule for 2022/23 school year, fall term

Date	Торіс
9/7/2022	Equation of single phase filtration.
9/14/2022	Solution of the equation of single phase filtration.
9/28/2022	Piston-like displacement.
9/28/2022	Characteristics of various flow regimes, steady-state flow, unsteady- state flow, pseudo steady-state slow
10/5/2022	The radial-diffusivity equation, solutions to the radial-diffusivity, equation bounded cylindrical reservoir, infinite cylindrical reservoir with line source, well pseudo steady-state flow, choosing the best pressure functions
10/12/2022	Principle of superposition accounting for the effects of more than one well, accounting for rate change effects, accounting for pressure change effects simulating boundary effects.
10/19/2022	Test writing.
10/26/2022	The equation of two phase filtration, vertical two-phase filtration of incompressible fluids, the fractional flow equation, frontal displacement determination of the frontal saturation by material balance method.
11/9/2022	Water coning, fingering and cresting in vertical and horizontal wells, critical rate calculation.
11/9/2022	Steady state and pseudo-steady state filtration around horizontal well.
11/16/2022	Water and gas coning in horizontal wells
11/23/2022	Well Tests: flow tests
11/30/2022	Well Tests: Pressure Build-up Tests (PBUPT), Well Tests: Interpretations of PBUPT
12/7/2022	Test writing.

Test Example

CLOSED BOOK (15 minutes)

NAME of STUDENT: _____ ID No.:_____

1. Mark the correctness of the following statements.

	TR	FA
	U	LS
	E	E
The constitutive equation (relationship between the fluxes and driving forces) at single phase filtration is the Darcy's law		
The Continuity Equation expresses the conservation of the energy		
$\frac{d\rho}{dp} = 0$ is the State Equation of slightly compressible fluid		
The compressibility of real gas can be calculated with the following equation $c_g = \frac{1}{p} - \frac{1}{z(p)} \frac{\partial z}{\partial p}$		
At the derivation of the special filtration equation of slightly compressible fluid we shoul assume that the reservoir is isotropic, homogeneous, and viscosity is constant and the porous media is incompressible.		

- 2. Write up the definition of the pszeudo-pressure introduced by Al Hussany
- 3. Give the name of the parameter of the equation bellow

$\Delta m(p) = \frac{\phi c_g \mu}{k} \frac{\partial m(p)}{\partial t}$
m(p)
φ
с _д
ч
k

4. Can be use of the above equation in case of real gas flow

Mark the correct answer

TRUE	FALSE
------	-------

"I pledge that I have neither given nor received any unauthorized assistance on this quiz."

Student's Signature: _____

Examination review questions Final Exam OPEN BOOK

May 16, 2013 (50 minutes)

Student Name:.....

Student ID No.:....

Question No.	Marks	Score
1	11	
2	13	
3	12	
Total	36	

"I pledge that I have neither given nor received any unauthorized assistance on this exam."

Student's Signature: _____

Question No. 1

The following data of a oil bearing layer are known:

- Permeability:	k =	1.50 10 ⁻¹⁴	m^2
- Porosity: $\phi =$	0.25		
- Thickness:	h =	8.00	m
- Well radius:	$r_{\rm w} =$	0.12	m
- Oil viscosity:	$\mu =$	1.0 10 ⁻³	Pas
- Oil compressibility:	c =	1.0 10 ⁻⁹	1/Pa
- Production rate: q =	-20.00	m ³ /day	7
- Initial pressure p _i =	10.00	MPa	

$$p_{i} - p(r, t) = \frac{\mu q}{4\pi h k} \operatorname{Ei}\left(-\frac{r^{2}}{4Kt}\right) \qquad p_{i} - p(r, t) = -\frac{\mu q}{4\pi h k}\left(0.80907 + \ln\frac{Kt}{r^{2}}\right)$$

a) b)

Determine the flowing bottomhole pressure in the well and 100 m distance from the well after 30 days!

Which formula can be used to determine the pressure 100 m distant after one day?

Flowing bottomhole pressure after		
30 days, bar		
Can the formulae b) use to calculate the	Yes	No
flowing bottomhole pressure		
Pressure at 100 from the well after		
30 days, bar		
Can the formulae b) use to calculate the	Yes	No
pressure at 100 from the well after		
30 days		
Which formula can be used to determine	a)	b)
the pressure 100 m distant after one day		

Summarize the results here.

Question No. 2

Calculate the dimensionless variables after 35 days for the well which data given bellow

t =	35.00	day	
r =	410.00	ft	
	1397.0		
p =	0	psi	
B _o =	1		
		1.75E+0	
- Permeability:	k =	1	mD
- Porosity:	$\phi =$	0.05	
- Thickness:	h =	49.21	ft
- Well radius:	r _w =	0.328	ft
		8.00E-	
- Oil viscosity:	μ=	01	cP
- Oil		1.03E-	
compressibility:	C =	05	1/psi
- Production			
rate:	q =	-283.00	bbl/day
- Initial pressure	pi =	2030.53	psi

Summarize the results here.

Dimensionless time t _D =	
Dimensionless radius r _D =	
Dimensionless pressure p _D =	

Question No. 3

There are two well placed centrally in two cylindrical drainage areas. The radius of both drainage area is $\mathbf{r}_e = 3000 \text{ m}$. Well 1 is located (0.9 \mathbf{r}_e) distance from the origin of the drainage area. The Well 2 is located (0.45 \mathbf{r}_e) distance from the origin of the drainage area. Both well wellbore radius is $\mathbf{r}_w = 0.1 \text{ m}$, which well production (Well 1 qr1, Well 2 qr2) is grater if the potential functions (ϕ_e , ϕ_w) are same in both cases:

Summarize the results here.

$q_{f1}/q_{f1} =$		
Which is greater	\mathbf{q}_{f1}	q_{f2}

